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LETTER TO THE EDITOR 

Absolute stability criterion for discrete time neural networks 

B Cessac 
Cenee d’Etndes et de Recherches de Toulouse. 2, avenue Edouard Belin. BP 4025, 
31055 Toulouse cedex, France 

Received 6 October 1994 

Abstract. We give an absolute stability Criterion for additive neural networks with discrete time 
dynamics i.e. we show tha there exists a value for the gain parameter of the sigmoidal transfer 
function below which the system admits only one fixed point, attracting all mjmories. As an 
example, we compute this value in the case of random synaptic weights and fully connected 
net, in the thermodynamic limit. 

AsymmeBic recurrent neural networks have, in general, a complex and chaotic dynamics 
[1-5]. However, they also admit, for low gain, an absolutely stable regime, where only 
one fixed point exists, attracting all the trajectories. It is interesting to know the conditions 
for this absolute stability, in particular, because it is a starting point for the study of the 
cascade of bifurcations leading to chaos in these systems [6,7]. In the frame of continuous- 
time asymmetric recurrent neural networks, several sufficient conditions have been derived 
[&12], however, a more general condition has recently been obtained by Matsuoka [13], 
relying on the spectral radius of the matrix F, where 9 is the matrix of synaptic weights. 

The aim of this letter is to provide an analogous criterion in the case of additive neural 
networks with discrete time dynamics. We show that there exists a value for the gain 
parameter of the sigmoidal transfer function below which the system is absolutely stable. 
This criterion is very general because it depends only on the norm of the matrix of synaptic 
weights. So, it can be applied to a very wide variety of discrete neural networks; for 
example, models with various architectures or models where the transfer function of each 
neuron is different. As an example, we compute the limiting value of absolute stability in 
the case of random synaptlc weights and fully connected net, in the thermodynamic limit. 

We are interested in the following class of discrebtime additive neural networks: 

Jfl is the synaptic weight connecting unit j to unit i, and is a time-independent threshold. 
The transfer functions f j ( x )  are smooth sigmoidal functions not necessarily identical. The 
maximal slope (gain parameter) of each f i ( x )  is called gj. As an example, & ( x )  may be 
the function tanh(gjx) or the function (l+tanh(pjx))/2; in this last case the maximal slope 

n e  general idea is to show that, under some conditions on the gain parameters, the 
is gj =, d 2 .  

function F = (F~)~=I . . .N is a contraction, i.e. 

3h < 1 VU, 2) E S2 IIF(u) - F(v) [~  < X / U  - ztll (2) 
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where R is the (compact) phase space of (1). In this case, (1) admits only one stable fixed 
point attracting all trajectories. 

In this paper, 11 11 is the Euclidean nom, and the norm of a matrix Y is 

Property (2) is related to the Jacobian matrix of F, DF(u)  by 

DF(u)  is related to the matrix of synaptic weights J by 

DF(u) = gA(u) 

where A(u) is the diagonal matrix 

' Aij(U) f ; (U j )& j .  

Heie f' is the derivative of f. Then if 

(4) 

(5) 

F is a contraction. 
Each function fi' is bounded by g;, the maximal slope of fi. A(w) is a diagonal matrix 

sup 11A(u)11 < sup gi. Then, if 
%En I<KN 

(1) is absolutely stable. 
Let 

(in the case of identical transfer functions g; = g, Vi). The (sufficient) criterion for absolute 
stability is then 

(9) 

This criterion is very general. For example, it can be applied to networks with various 
architecture (diluted, fully connected, etc) provided that the norm of 3 is finite. The transfer 
functions are not necessarily identical, and can be any (differentiable) sigmoidal function. 

As an example, we compute the value g, in the case of fully-connected models, .where 
the synaptic weights are independent identidy-distributed random variables, with variance 
$. This kind of synaptic weight .is 'widely used in statistical mechanics and in vkous 
models of neural networks [l, 2.41. In this case, it is easy to compute.the norm It311 in the 
thermodynamic limit, by using results from random matrices [14,15]. 

In the case of symmetric and centred synaptic weights, g, can be evaluated in 
the thermodynamic limit by using the Wigner semicircular law [141. In this case, 
11311 = p ( J )  = 2J, where p ( 3 )  is the spectral radius of the matrix 3. 

We are mostly interested in asymmetric synaptic weights, where complex dynamics 
arise. In this case, it is easy to prove the two following theorems. 

1 
&?<gas==. * - 

. .  
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Theorem 1 (centred weights). Let wij be independent identically-distributed random 
variables of variance .Iz. such that 

(i) E(wij) = 0; and 
(ii) there exists some IY z 0 such that E(lwijY) < nun for every n 2 2. 
Let 3= { J i j ] ~ ~ G N , 1 G j G N  be the N x N matrix of synaptic weights, where Jij = 3. 
Notice that condition (ii) holds, in particular, for Gaussian or uniform synaptic weights. 

The next theorem deals with non-centred synaptic weights with expectation i. 

Then, almost surely g,  + & when N + CO. 

Theorem 2 (weights with non-zero expectation). Under hypotheses (i), (ii) and if .Iij = 
3 + 6, there exists a value gk  converging almost surely towards & when N + CO, 

for which, if g i gk, (1) is absolutely stable. 

The proofs rely on the following theorem by Geman [15]. 

Theorem 3 [IS]. Suppose that v .  i ,  j = 1,. . ., are independent identically-distributed 
random variables satisfying Ti) and (ii).~ Let J 2  = E[u:] and U be the N x N matrix of the 
uij’s, then &llul[ + 25 almost surely when N --f CO. 

”:. 

The proof of theorem 1 is a direct application of theorem 3 [15]. 

Proof of theorem 2.  Let A be the matrix whose components are all equal to 5: 
11371 < 113 - AII+IIAII, 

113 -AI[ + 25 when N + CO: Besides, llAll = 7. 
If g < gk  = l/ll3,- AII+IIAII, then (1) is absolutely stable. By,theorem 3 

0 

For finite-sized systems, equations (9) indicate that the model (1) admits an absolutely- 
stable regime for low gain, whatever the specifications of this model (architecture, specific 
form of the synaptic weights, specific form of the transfer function, etc) are. This shows, 
for example, that the occurrence of more complex dynamical regimes (e.g. periodic, quasi- 
periodic, orchaotic) for asymmetric synaptic weights or the occurrence of several stable 
fixed points in (1) for symmehjc synaptic weights can only occur when the gain is larger. 
than gas. 

I am very grateful to M Samuelides, M BenaYm, M Quoy and B Doyon for helpful 
discussions. 
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